Synthesis and evaluation of poly(diol citrate) biodegradable elastomers.
نویسندگان
چکیده
Herein, we report the synthesis and evaluation of a novel family of biodegradable and elastomeric polyesters, poly(diol citrates). Poly(diol citrates) were synthesized by reacting citric acid with various diols to form a covalent cross-linked network via a polycondensation reaction without using exogenous catalysts. The tensile strength of poly(diol citrates) were as high as 11.15+/-2.62 MPa and Young's modulus ranged from 1.60+/-0.05 to 13.98+/-3.05 MPa under the synthesis conditions that were investigated. Elongation was as high as 502+/-16%. No permanent deformation was found during mechanical tests. The equilibrium water-in-air contact angles of measured poly(diol citrates) films ranged from 15 degrees to 53 degrees . The mechanical properties, degradation and surface characteristics of poly(diol citrates) could be controlled by choosing different diols as well as by controlling the cross-link density of the polyester network. Various types of poly(diol citrate) scaffolds were fabricated to demonstrate their processing potential. These scaffolds were soft and could recover from deformation. In vitro and in vivo evaluation using cell culture and subcutaneous implantation, respectively, confirmed cell and tissue compatibility. The introduction of poly(diol citrates) will expand the repertoire of currently available biodegradable polymeric elastomers and should help meet the requirements of tissue engineering applications.
منابع مشابه
Poly(diol citrate) nanocomposites with enhanced mechanical properties
The mechanical properties of a tissue engineering scaffold are particularly important when engineering soft tissues as it has been shown that mechanical stimulation during in vitro tissue development can modulate cell differentiation, increase extracellular matrix synthesis, and enhance the mechanical properties of cartilaginous, ligamentous, and smooth muscle containing tissues [1-5]. Unfortun...
متن کاملRecent Developments on Citric Acid Derived Biodegradable Elastomers
Biodegradable elastomers have recently found widespread application in many areas of biomedical engineering such as tissue engineering, drug delivery, and bioimaging. In particular, the recent developments in research have led to the creation of citric acid based polymers with enhanced mechanical properties, novel design strategies for crosslinking, nanoporous features, and unique photoluminesc...
متن کاملNovel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering.
Compliance mismatch, thrombosis, and long culture times in vitro remain important challenges to the clinical implementation of a tissue-engineered small-diameter blood vessel (SDBV). To address these issues, we are developing an implantable elastomeric and biodegradable biphasic tubular scaffold. The scaffold design uses connected nonporous and porous phases as a basis to mimic, respectively, t...
متن کاملSynthesis and characterization of a biodegradable elastomer featuring a dual crosslinking mechanism.
The need for advanced materials in emerging technologies such as tissue engineering has prompted increased research to produce novel biodegradable polymers elastic in nature and mechanically compliant with the host tissue. We have developed a soft biodegradable elastomeric platform biomaterial created from citric acid, maleic anhydride, and 1,8-octanediol, poly(octamethylene maleate (anhydride)...
متن کاملStudy on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers
Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 27 9 شماره
صفحات -
تاریخ انتشار 2006